If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+28y-130=0
a = 3; b = 28; c = -130;
Δ = b2-4ac
Δ = 282-4·3·(-130)
Δ = 2344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2344}=\sqrt{4*586}=\sqrt{4}*\sqrt{586}=2\sqrt{586}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{586}}{2*3}=\frac{-28-2\sqrt{586}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{586}}{2*3}=\frac{-28+2\sqrt{586}}{6} $
| -124=4(1-4x) | | -9p=98.1 | | 5(5-7x)=200 | | 5=-c/3 | | 4.5=6.9-0.4x | | g/3=-8 | | -k/6=-6 | | 2b4-9=95 | | 51=17n | | 3x/5=-12/7 | | 192=16u | | x+.05x=467.25 | | -3c/5=15 | | 6c+14=(-5)+4+9c | | 8-(.25x)=5 | | 24+24x=21+25x | | 9g−9=10g | | 15g-35=280 | | 125b-35=3b-9 | | 4a-5a+2a+9=28 | | 6(3x-4)=3(2x+1) | | X+(+26)+(x-41)=180 | | Sx6+37=169 | | -(3x+6)=28 | | -9(x+)+6=-12 | | a/62+2=14 | | 180x16=8X | | 7x+1=18+4 | | 2x-10=×+5 | | (2x–1)(3x+5)=0 | | -18x-10/18=-10+139/9 | | -9u-6=7u=16 |